Zr1-C7	2.577 (8)	C6—C7	1.395 (11)
Zr1-C6	2.579 (7)	C7-C8	1.401 (12)
Zr1-C8	2.584 (8)	C8-C9	1.397 (11)
Zr1-C9	2.585 (7)	C9-C10	1.392 (10)
Zr1	2,587 (8)	C11-C12	1,409 (11)
Zr1	2 596 (7)	C11-C15	1.409 (11)
$7r^2 - 0^2$	1.960 (5)	C12-C13	1.394 (11)
$7r^2 - 01$	1.968 (5)	C13-C14	1.404 (12)
$7r^2 - C14$	2 563 (8)	C14C15	1.392 (11)
$7r^2 - C15$	2,567 (8)	C16-C20	1.399 (11)
$7r^2 - C16$	2.571 (7)	C16-C17	1.411 (10)
$7r^2 - C11$	2 576 (7)	C17-C18	1.385 (11)
$7r^2 - C^{20}$	2 583 (7)	C18-C19	1.413 (11)
Zr2	2 577 (7)	C19 - C20	1.384 (10)
$7r^2 - C13$	2 582 (8)	$C_{21} - C_{22}$	1.396 (11)
$7r^2 - C18$	2.582 (0)	$C_{21} - C_{25}$	1.395 (11)
7_{r}^{2} C10	2 586 (7)	$C^{22} - C^{23}$	1.404 (11)
$7r^2 - C1^2$	2.587 (8)	$C^{23} - C^{24}$	1.402 (11)
$7r_{3}=02$	1.976 (5)	C24-C25	1.401 (11)
Z13-02 7r3-03	1.975 (5)	C26-C27	1 392 (11)
$2_{13} = 0_{3}$ $7_{r3} = 0_{3}$	2 554 (8)	C26 C20	1.352(11)
Z13-C22 7-3 C30	2.554 (8)	C20-C30	1.406(11)
Z13-C30 7r3-C20	2.569 (8)	$C_{28} - C_{29}$	1.398 (11)
Zr3_C23	2.563 (7)	C29-C30	1.385 (12)
Zr3	2.565 (7)	C1B-C6B	1.343 (14)
$7r_{3}-C_{24}$	2,569 (7)	C1B = C2B	1.347 (14)
$7r_3 - C_{27}$	2.584 (7)	C2B-C3B	1.356 (15)
Zr3	2.587 (8)	C3R - C4R	1.370 (21)
Zr3_C28	2.588 (7)	C4B-C5B	1.381 (22)
$Zr_3 - C_{26}$	2.596 (7)	C5B-C6B	1.360 (16)
01 7-1 02	07.75 (12)	C18 C17 C16	100 1 (7)
01 - 2r1 - 03	97.73(13)	C10 - C17 - C10	107.1(7)
02 - 2r2 - 01	97.0(2)	C17 - C10 - C19	107.2 (7)
$02 - 2r_3 - 03$	97.47 (14)	$C_{20} = C_{19} = C_{16}$	100.1 (7)
$Z_{\rm f1} = 01 = 2f_2$	142.0 (2)	C19 - C20 - C10	107.0(7)
$Z_{12} = 02 = Z_{13}$	142.4 (1)	$C_{22} = C_{21} = C_{23}$	107.3(7)
21 - 03 - 213	142.1(2)	$C_{21} = C_{22} = C_{23}$	108.5(7)
$C_{3} - C_{2} - C_{1}$	108.8 (8)	C24 - C23 - C22 C25 - C24 - C23	107.0(7)
$C_{4} = C_{3} = C_{2}$	107.6 (8)	$C_{23} = C_{24} = C_{25}$	109.2 (7)
$C_1 = C_5 = C_4$	107.0 (8)	C27 - C26 - C30	107.8 (8)
$C_{10} C_{6} C_{7}$	106.3 (7)	$C_{26} - C_{27} - C_{28}$	108.1 (7)
$C_{10} = C_{0} = C_{1}$	108.9 (8)	$C^{20} - C^{28} - C^{27}$	107.6 (7)
$C_{0} C_{8} C_{7}$	108.0 (7)	$C_{20} - C_{20} - C_{20}$	107.0(7)
$C_{10} - C_{0} - C_{10}$	106.8 (7)	$C_{29} - C_{29} - C_{26}$	108.0(7)
C6_C10_C0	110.0(7)	C6R - C1R - C2R	120.0 (10)
C12-C11-C15	107.7(7)	C1B-C2B-C3B	121.9 (11)
C13_C12_C13	108 3 (8)	C2B = C3B = C4B	117.5 (11)
C12 - C12 - C14	107.5 (7)	C3B-C4B-C5B	121.6 (12)
C15-C14-C13	109.0 (7)	C6B-C5B-C4B	117.9 (12)
C14 - C15 - C11	107.5 (7)	C1B-C6B-C5B	121.1 (11)
C_{20} $-C_{16}$ $-C_{17}$	106.6 (7)	2.2 002 002	()

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55975 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1023]

References

- Babcock, L. M., Day, V. W. & Klemperer, W. G. (1989). Inorg. Chem. 28, 806-810.
- Fachinetti, G, Floriani, C., Chiesi-Villa, A. & Guastini, C. (1979). J. Am. Chem. Soc. 101, 1767-1775.
- Kropp, K., Skibbe, V. & Erker, G. (1983). J. Am. Chem. Soc. 105, 3353-3354.
- Sheldrick, G. M. (1989). SHELXTL-Plus. PC version. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1992). SHELXL92. Program for the refinement of crystal structures. Beta test version. Univ. of Göttingen, Germany.
- Thewalt, U., Döpport, K. & Lasser, W. (1986). J. Organomet. Chem. 308, 303-309.

Acta Cryst. (1993). C49, 1347-1350

Cobaltocenium Bis[(4,5-dimercapto- S^4 , S^5)-1,3-dithiole-2-thionato]nickelate

FANG QI* AND YOU XIAO-ZENG

Coordination Chemistry Institute, Nanjing University, Nanjing 210008, People's Republic of China

CAI JIN-HUA AND HE MEI-YUN

Fuzhou Laboratory of Structure Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People's Republic of China

(Received 22 April 1992; accepted 11 January 1993)

Abstract

The coordination anions of the title compound $[Co(C_5H_5)_2][Ni(dmit)_2]$ are planar with a shuttleshaped D_{2h} configuration. The cobaltocenium cations take an eclipsed D_{5h} conformation with an average Co—C distance of 2.037 (16) Å. The crystal consists of sheets of S…S connected anionic stacks with pairs of cations between them.

Comment

Since Steimecke, Sieler, Kirmse & Hoyer (1979) first prepared $(Bu_4N)_n[Ni(dmit)_2]$ (n = 1, 2), a great deal of attention has been directed to $Z_x[M(dmit)_2]$ type complexes (M = Ni, Pd, Pt, Cu; H₂dmit = H₂C₃S₅ = 4,5-dimercapto-1,3-dithiole-2-thione; Z = variouscations; $0 \le x \le 1$ or x = 2 because they are known possess molecular electrical conductivity. to $[M(dmit)_2]^{\delta}$ has a planar structure with a delocalized electronic state; these anions may adhere together by means of intermolecular S.S interactions forming anionic stacks, sheets or even networks. They combine with various closed-shell counter ions or open-shell organic radicals to form conducting complexes such as superconductors [(CH₃)₄N]₀ [Ni(dmit)₂] (Kim, Kobayashi, Sasaki, Kato & Kobayashi, 1987) and TTF_{0.5}[Ni(dmit)₂] (Bousseau, Valade, Legros, Cassoux, Garbauskas & Interrante, 1986). Metalloceniums have different tendencies to accept electrons and when they interact with $[Ni(dmit)_2]^-$ quite different compounds can be produced. The reaction of (Bu₄N)[Ni(dmit)₂] and $[Fe(C_5H_5)_2]BF_4$ produces a completed chargetransfer semiconductor [Ni(dmit)₂] (Fang, Li, Qu 1992). However, the reaction of You, &

* Present address: Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China.

 $(Bu_4N)[Ni(dmit)_2]$ with $[Fe(C_5Me_5)_2]BF_4$ results in $[Fe(C_5Me_5)_2][Ni(dmit)_2]$, which exhibits ferromagnetic interactions below 10 K (Broderick, Thompson, Godfrey, Sabat, Hoffman & Day, 1989). Here we report the structure of another new type of complex $[Co(C_5H_5)_2][Ni(dmit)_2]$. The specimen was prepared by Fang, Li, Qu & You (1992).

Two factors significantly affect the conducting ability of $Z_x[M(dmit)_2]$ type complexes. One is the electric charge δ of $[M(\text{dmit})_2]^{\delta-1}$, and the other is the degree of anionic interaction indicated by S.S. distances which are shorter than the sum of the van der Waals radii, 3.70 Å (Pauling, 1960).

There are six kinds of bonds in the planar shuttleshaped anions with average values of a = 2.161 (5), b = 1.73 (1), c = 1.74 (1), d = 1.72 (2), e = 1.64 (2) and f = 1.34 (2) Å (Fig. 1); these are very close to the respective bond distances in [Ni(dmit)₂]⁻ (Mentzafos, Hountas & Terzis, 1988) and in [Ni(dmit)]^{-0.29} (Valade, Legros, Bousseau, Cassoux, Garbauskas & Interrante, 1985). The highly delocalized electronic states of the anions is responsible for their bond parameters being very insensitive to their charges. The average Co-C(Cp) distance is 2.037 (16) Å, which is shorter than the respective value of 2.096 (8) Å in cobaltocene (Bünder & Weiss, 1975) and seemingly a little longer than that of 2.023 (6) Å in $[Co(C_5H_5)C_5H_4(COOH)]PF_6$ (Riley & Davis, 1978). Until more precise Co-C(Cp) distances of the title compound and $[Co(C_5H_5)_2]^+$ are obtained, we can only assume that the cation's charge is less than 1 and thus the anion's charge is also less than 1. The C-C distances of cobaltocenium average 1.43 (2) Å. A noticeable feature of this sandwich is its eclipsed D_{5h} configuration.

Fig. 1. Thermal ellipsoid plot of the anion.

The asymmetric unit contains four independent anions, abbreviated as [Ni]₁, [Ni]₂, [Ni]₃ and [Ni]₄. S...S distances between any two of them (less than 3.7 Å) are listed in Table 3. $[Ni]_1$ and $[Ni]_2$ are connected by five pairs of S...S intermolecular interactions; the dihedral angle between the anion planes is 75.2 (2)°. They form ...[Ni]1[Ni]2[Ni]1[Ni]2... zigzag chains or stacks along the [001] direction. [Ni]₃ and [Ni]₄ form another kind of stack with a dihedral angle of $67.9 (2)^{\circ}$. The two types of stacks are further connected by five S...S contacts (S10...S40, S29...S30, S20...S40 and S28...S37, S29...S45) forming two-

dimensional (111) sheets. Furthermore, the neighbouring sheets are weakly connected by S27...S43. showing the character of a three-dimensional anionic network. The cyclopentadienyl rings are parallel to each other and perpendicular to the molecular planes of the anions. Cations are arranged in pairs. The Co…Co distance within a pair is 6.72(1) Å and the shortest Co---Co distance between two nearest pairs is 9.15 (1) Å. By comparison with [Bu₄N][Ni(dmit)₂] and $[Fe(C_5Me_5)_2][Ni(dmit)_2]$, the intermolecular interactions are much stronger and its electric conductivity should be considerably higher.

Experimental

Crystal data $[Co(C_5H_5)_2][Ni(C_3S_5)_2]$ $D_m = 1.89 \text{ Mg m}^{-3}$ $M_r = 640.54$ Density measured by flota-Triclinic tion $P\overline{1}$ Mo $K\alpha$ radiation a = 19.347 (9) Å $\lambda = 0.71069 \text{ Å}$ b = 25.289 (7) Å Cell parameters from 20 c = 9.698 (3) Å reflections $\alpha = 100.60 (2)^{\circ}$ $\theta = 5 - 10^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ $\beta = 96.02 (3)^{\circ}$ $\gamma = 76.01 (3)^{\circ}$ T = 296 KV = 4517 (3) Å³ Platelet Z = 8 $0.60 \times 0.40 \times 0.02 \text{ mm}$ Blackish green $D_x = 1.88 \text{ Mg m}^{-3}$ Data collection Rigaku AFC-5 diffractome-6490 observed reflections ter $[F > 4\sigma(F)]$ $\omega/2\theta$ scans, ω -scan width $R_{\rm int} = 0.031$ $(0.45+0.35\tan\theta)^\circ$, scan $\theta_{\rm max} = 46.0^{\circ}$ $h = 0 \rightarrow 23$ speed 8° min⁻¹ Absorption correction: $k = -30 \rightarrow 30$

3 standard reflections $T_{\rm min} = 0.570, \ T_{\rm max} = 1.00$ 12675 measured reflections frequency: 180 min intensity variation: <5.4%

 $l = -12 \rightarrow 12$

tions Refinement

Ni1

Ni2

Ni3

empirical

12675 independent reflec-

Refinement on F^2	Unit weights applied
Final $R = 0.047$	$(\Delta/\sigma)_{\rm max} = 1.01$
wR = 0.062	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.32	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$
6490 reflections	Atomic scattering factors
799 parameters	from International Tables
H-atom parameters not re-	for X-ray Crystallography
fined	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$B_{\rm eq} = \frac{4}{3} \sum_i \sum_j \beta_{ij} \mathbf{a}_i . \mathbf{a}_j.$

x	у	z	Bea
0.4123 (1)	0.26937 (7)	0.9632 (2)	3.73 (4)
0.6151 (1)	0.25657 (7)	0.4984 (2)	3.61 (4)
0.1452 (1)	0.21708 (9)	0.0276 (2)	4.45 (5)

REGULAR STRUCTURAL PAPERS

Ni4	0.9030(1)	0 28235 (8)	0.6152 (2)	3.59(4)	C1J	0.9462 (8)	0.0589 ((7) 1.0604 (4)	7.3 (5)
0.1	0.9050 (1)	0.11672 (0)	0.0604 (2)	4 19 (5)	C24	0 1005 (0)	0 3357	7) 0.555 (2)	5 4 (4)
Col	0.8/28(1)	0.110/3 (8)	0.9094 (2)	4.16 (5)	C2A	0.1995 (9)	0.5557		5.4 (4)
Co2	0.0941 (1)	0.36728 (8)	0.5812 (2)	4.19 (5)	C2B	0.1799 (8)	0.3190 ((7) 0.672 (2)	5.0 (4)
Co3	0.6171(1)	0.34888 (8)	0.1113 (2)	3.69 (5)	C2C	0.1240 (8)	0.2896	(6) 0.629 (2)	4.4 (4)
Col	0.3568 (1)	0 13055 (8)	04150(2)	4 43 (5)	C2D	0.1106 (9)	0.2878	(7) 0.479 (2)	5.3 (4)
010	0.3300 (1)	0.133335 (0)	0.7442 (6)	60(1)	C2E	0 1582 (0)	0 3167	(7) 0.435 (2)	59(5)
510	0.7018(3)	0.0407 (2)	0.7445(0)	0.9(1)	C2E	0.1302(9)	0.5107	(7) 0.435(2)	7.1 (6)
S11	0.3575 (2)	0.2978 (2)	1.1543 (4)	5.0(1)	C2F	0.0822 (11)	0.4502	(7) 0.613 (2)	7.1 (0)
S12	0.3515(2)	0.3382 (2)	0.8665 (4)	4.5 (1)	C2G	0.0586 (10)	0.4342	(8) 0.731 (2)	7.1 (6)
\$13	0.4691 (3)	0 1977 (2)	1 0526 (4)	56(1)	C2H	0.0024 (10)	0.4054	(7) 0.678 (2)	6.5 (5)
315	0.4091 (3)	0.1/// (2)	0.7705 (4)	4 6 (1)	C21	-0.0083 (11)	0 4063	7 0 533 (2)	66(5)
S14	0.4730(2)	0.2403 (2)	0.7793 (4)	4.0(1)	C21	-0.0005 (11)	0.4005	(7) 0.555 (2)	7.2 (6)
S15	0.2371 (2)	0.3969 (2)	1.2375 (5)	5.5 (1)	C2J	0.0405 (11)	0.4337	(7) 0.490 (2)	7.2(0)
S16	0.2312 (2)	0.4336(2)	0.9718 (5)	5.4 (1)	C3A	0.5683 (9)	0.4231	(7) 0.052 (2)	5.5 (5)
\$17	0 5905 (3)	0 1028 (2)	0 9459 (5)	63(1)	C3B	0.5192 (9)	0.3888	(7) 0.042 (2)	5.5 (5)
317	0.5905 (5)	0.1020 (2)	0.04070 (5)	5 2 (1)	CiC	0 5154 (9)	0 3750	(7) 0 178 (2)	61(5)
518	0.5967(2)	0.1488 (2)	0.0979(3)	5.5(1)	0.00	0.515+(7)	0.4030	(7) 0.170 (2)	6 2 (5)
S19	0.1239 (3)	0.4929 (2)	1.1788 (6)	7.7 (2)	C3D	0.5644 (10)	0.4020	(7) 0.273 (2)	0.2 (5)
S20	0.9170 (3)	0.0312 (3)	0.4061 (6)	6.9 (1)	C3E	0.5963 (10)	0.4299	(7) 0.196 (2)	6.2 (5)
\$21	0 5977 (2)	0 3375 (2)	0.6299 (5)	4.8 (1)	C31	0.6438 (9)	0.2657	(6) 0.107 (2)	5.1 (4)
521	0.5050 (2)	0.3699 (2)	0.4140 (4)	12(1)	СЗИ	0 6447 (8)	0 2781	(6) -0.031(2)	4.6 (4)
522	0.3039(2)	0.2008 (2)	0.4147 (4)	4.5(1)	C2C	0,6060 (9)	0 2117	(6) = 0.023(2)	A 7 (A)
S23	0.7237 (2)	0.2431 (2)	0.5850 (4)	4.7(1)	0.50	0.0909 (8)	0.5117	(0) = 0.023(2)	T.7 (T)
S24	0.6319 (2)	0.1758 (2)	0.3666 (4)	4.3 (1)	C3F	0.7256 (9)	0.3214	(7) 0.120(2)	5.2 (4)
\$25	0 4605 (2)	0 4249 (2)	0.6874 (5)	5.0(1)	C3J	0.6930 (9)	0.2933	(7) 0.200 (2)	5.7 (5)
626	0.4000 (2)	0.2619 (2)	0 4015 (5)	48(1)	C4A	0 3345 (9)	0.2233	(7) 0.458 (2)	5.8 (5)
320	0.3772 (2)	0.3018 (2)	0.4913(3)	4.0(1)	CAP	0 3 102 (0)	0 2017	(7) 0 574 (2)	52(4)
S27	0.8482 (2)	0.1436(2)	0.5361 (5)	5.4 (1)	C4D	0.3192(9)	0.2017	(7) $0.577(2)$	5.2 (4)
S28	0.7623 (2)	0.0796 (2)	0.3469 (5)	5.3 (1)	C4C	0.2690 (9)	0.16/3	(7) 0.527(2)	5.5 (4)
\$29	0 3016 (2)	0.4632(2)	0.6658 (5)	5.7(1)	C4D	0.2502 (11)	0.1684	(8) 0.380 (2)	6.3 (5)
620	0.1555 (2)	0.4294 (2)	0 1922 (6)	66(1)	C4E	0.2911 (10)	0.2037	(7) 0.338 (2)	6.3 (5)
\$30	-0.1555 (5)	0.4384 (2)	0.1852 (0)	0.0(1)	CAE	0.3917 (10)	0.0640	(7) 0.290 (2)	65(5)
S31	0.1625 (2)	0.1296 (2)	0.0342 (4)	5.2 (1)	C4r	0.3612 (10)	0.0040	(7) $0.200(2)$	6.1 (5)
S32	0.0471 (2)	0.2254 (2)	0.1227 (4)	4.4 (1)	C4G	0.3968 (10)	0.0589	(7) 0.434 (2)	0.1 (5)
\$33	0 1245 (2)	0 3048 (2)	0.0166 (5)	55(1)	C4H	0.4477 (10)	0.0907	(7) 0.494 (2)	6.5 (5)
333	0.1243(2)	0.3070 (2)	0.0705 (5)	61(1)	C41	0.4638 (10)	0.1170	(8) 0.387 (2)	7.0 (6)
534	0.2438 (3)	0.2073(2)	-0.0703 (3)	0.1(1)	CAL	0 4246 (11)	0.0000	(8) 0.263 (2)	69(5)
S35	0.0077 (3)	0.3967 (2)	0.0844 (5)	5.6(1)	C4J	0.4240 (11)	0.0333	(8) 0.205 (2)	0.7 (3)
S36	-0.0769 (2)	0.3236(2)	0.1839 (4)	4.5 (1)					
\$37	0 2772 (3)	0.0326 (2)	-0.0815(5)	7.3 (1)				•	
007	0.2772 (3)	0.1022 (2)	0.1694 (5)	70(2)	Tab	nle 2 Select	ed hond le	neths (A) and ar	igles (°)
538	0.3334 (3)	0.1032 (3)	-0.1064 (3)	1.5 (2)	Iuc	10 2. Sereer			
S39	0.4065 (4)	-0.0186 (3)	-0.2391 (7)	11.7 (2)	Ni1-S11		2.151 (5)	\$15—C15	1.722 (17)
S40	1.1891 (3)	0.0474 (2)	0.4673 (5)	6.1 (1)	Ni1		2 163 (5)	S16-C11	1 744 (14)
S41	0 8313 (2)	0 3356 (2)	0.4863(4)	5.2 (1)	NII-312		2.105 (5)		1 704 (19)
642	0.8506 (2)	0 3308 (2)	0 8070 (4)	41(1)	NII513		2.159 (5)	310-015	1.724 (18)
342	0.8390 (2)	0.3308 (2)	0.0079(4)	4.1 (1)	Ni1-S14		2.156 (5)	S17—C13	1.745 (15)
S43	0.9430 (2)	0.2324 (2)	0.4228 (4)	4.5 (1)	Co1-C1/	4	2.021 (15)	S17-C16	1.715 (18)
S44	0.9784 (2)	0.2319 (2)	0.7462 (4)	4.04 (9)	Col Cli	- D	2 030 (16)	S18-C14	1 747 (14)
\$45	0 7112 (3)	0 4354 (2)	0.5605 (5)	6.2 (1)		0 C	2.037(10)		1 720 (17)
846	0 7257 (2)	0 4307 (2)	0 8565 (5)	51(1)	Co1-C10		2.047 (15)	518-010	1.730(17)
340	0.7557 (2)	0.4307 (2)	0.0505(5)	40(1)	Co1-C1/	D	2.035 (16)	S19C15	1.642 (15)
S47	1.0651 (2)	0.1308 (2)	0.3/26(4)	4.9 (1)	Col-Cl/	E	2.041 (15)	C11-C12	1.328 (23)
S48	1.0976 (2)	0.1305 (2)	0.6693 (4)	4.7 (1)		F	2 053 (18)	C13-C14	1 335 (23)
\$49	0.6136 (3)	0.5134(2)	0.7604 (7)	8.6 (2)			2.000 (10)		1 416 (24)
CU	0 2055 (8)	0 3738 (6)	0.995 (2)	43(4)	Co1-C10	U	2.049 (19)		1.410 (24)
CII	0.2955 (0)	0.3730(0)	1,119 (2)	4.1 (4)	Co1-C1	Н	2.020 (17)	CIA - CIE	1.428 (28)
CI2	0.2978 (8)	0.3373(0)	1.116 (2)	4.1 (4)	Co1C1.	I	2.038 (18)	C1 <i>B</i> C1 <i>C</i>	1.434 (25)
C13	0.5287 (8)	0.1645 (6)	0.928 (2)	4.7 (4)	Col-Cl	1	2.036 (19)	C1C-C1D	1.457 (25)
C14	0.5307 (8)	0.1852 (6)	0.812(1)	4.0 (4)	S10 C14	, ,	1 647 (15)		1 424 (23)
C15	0 1940 (8)	0 4440 (7)	1 131 (2)	5.1 (4)	510-010	2	1.047 (13)		1.404 (23)
	0.1240 (0)	0.0066 (6)	0.705 (2)	50(4)	S11-C12	2	1.730 (14)	CIF-CIG	1.404 (27)
C16	0.0327 (9)	0.0900(0)	0.793 (2)	5.0 (4)	S12-C11	l	1.712 (15)	C1F—C1J	1.388 (33)
C21	0.5069 (8)	0.3630 (6)	0.598 (1)	4.0 (4)	\$13-C13	3	1.715 (16)	C1GC1H	1.399 (33)
C22	0.4691 (7)	0.3331 (6)	0.509 (1)	3.7 (3)	S14 C1/		1 733 (14)	C1H - C1I	1 418 (32)
C23	0.7584 (8)	0.1760(6)	0.506 (1)	3.9 (4)	314-01-	*	1.739 (14)		1 473 (20)
C24	0 7190 (8)	0 1469 (6)	0417(1)	38(4)	212-CI	2	1.758 (15)	CII-CIJ	1.473 (29)
C24	0.7190 (8)	0.1405 (0)	0.410 (2)	4.2 (4)	\$11_Ni1	-\$12	92 9 (2)	\$16-C11-C12	116 (2)
C25	0.3/61 (8)	0.4195 (6)	0.019(2)	4.2 (4)	011 N:1	612	97 9 (2)	S12 C12 S17	123 (2)
C26	0.8450 (9)	0.0821 (7)	0.426 (2)	5.4 (4)	511-INII	-313	07.0(2)	313-013-317	125 (2)
C31	0.2404 (9)	0.1029 (7)	-0.046 (2)	5.3 (4)	S11—Ni1	—S14	174.4 (3)	S13-C13-C14	121 (2)
C32	0 2753 (9)	0.1356(7)	-0.088(2)	5.7 (5)	S12—Nil		176.7 (2)	S17C13C14	116(1)
C32	0.0065 (9)	0.2046 (6)	0.122 (1)	38(3)	S12—Ni1	-S14	86.3 (2)	S14—C14—S18	121.6 (9)
C33	0.0005 (8)	0.2940(0)	0.122(1)	5.6 (5)	S12 Nil		033(2)	\$14-C14-C13	122 (2)
C34	0.0414 (8)	0.3285 (6)	0.079(1)	4.4 (4)	315-141		40.9 (7)		116 (2)
C35	-0.0840 (9)	0.3887 (6)	0.150 (2)	4.7 (4)	CIA-CO	D - CIB	40.8 (7)	518	110(2)
C36	0.3483 (11)	0.0358 (8)	-0.165 (2)	7.6 (6)	ClA—Co	-C1E	41.1 (8)	C12-S15-C15	96.6 (8)
CAL	0.7906 (9)	0 3828 (6)	0 607 (2)	46(4)	C1A - Co	-C1G	160.4 (8)	C11-S16-C15	97.1 (8)
C41	0.7600 (8)	0.3828 (0)	0.007(2)	27(2)	C1R - Cc		411(7)	C13-S17-C16	97.1 (8)
C42	0.7925 (7)	0.3812(5)	0.747(1)	5.7 (5)			160 4 (7)	C14_S18_C16	96 6 (8)
C43	1.0106 (7)	0.1821 (6)	0.484 (1)	3.8 (4)	C18C0		100.4 (7)	016 016 016	50.0 (0)
C44	1.0260 (8)	0.1818 (6)	0.622 (1)	3.9 (4)	C1 <i>C</i> —Co	DI - CID	41.8 (7)	SIS-CIS-SI6	113.3 (8)
C45	0 6828 (0)	0 4624 (7)	0.726 (2)	5.6 (5)	C1 <i>C</i> —Co	o1-C1J	162.4 (9)	S15-C15-S19	122 (2)
C+5	1 1000 (9)	0.4024 (7)	0.720(2)	A 5 (A)	C1DC	-C1E	40.9 (6)	\$16-C15-S19	124 (2)
C46	1.1209 (8)	0.0482 (0)	0.500 (2)	4.5 (4)			167 6 (7)	S10 C16 S17	125 (2)
C1A	0.8213 (9)	0.1694 (7)	1.129 (2)	5.4 (5)			102.0 (7)	310-CIC-31/	123 (2)
C1 <i>B</i>	0.7713 (9)	0.1484 (7)	1.030 (2)	5.1 (4)	C1E - Cc		101.2 (8)	210-010-218	122 (2)
C1C	0.7783 (8)	0,1623 (6)	0.896 (2)	4.6 (4)	C1F—Co	ol—ClJ	39.7 (9)	S17-C16-S18	113.7 (8)
CID	0 8341 (0)	0 1033 (6)	0917 (2)	48(4)	CIG-C	-1-C1H	40.2 (8)	C1B-C1A-C1E	109 (2)
	0.0341 (9)	0.1933 (0)	0.71/(4)	4.5 (4)			12 4 (9)		108 (2)
ClE	0.8600 (9)	U.1976 (6)	1.061 (2)	4.3 (3)	01-00		42.4 (0)		100 (2)
C1F	0.9807 (10)	0.0833 (8)	0.980 (2)	7.1 (6)	Ni1-S1	I-C12	102.1 (6)	CIB-CIC-CID	100(1)
C1G	0.9527 (11)	0.0753 (7)	0.840 (2)	6.9 (5)	Ni1-S12	2—C11	102.0 (6)	C1C—C1D—C1E	109 (2)
CIH	0 8007 (11)	0.0456 (7)	0.832 (2)	68 (5)	Ni1-S1	3	102.2 (6)	CIA-CIE-CID	107 (2)
	0.0377 (11)	0.0-30(7)	0.052 (2)	87(4)	N(1 C1	4	1014(6)	CIG_CIF_CI	110 20
CII	0.8936 (10)	0.0336(7)	0.907(2)	o.∠ (0)	141-914		101.4 (0)		110(2)

S11C12S15	122 (1)	C1F—C1G—C1H	108 (2)
\$11-C12-C11	121 (2)	C1G-C1H-C1I	110 (2)
\$15-C12-C11	117 (2)	C1H-C1I-C1J	106 (2)
\$12-C11-\$16	122 (1)	C1F—C1J—C1I	109 (2)
S12-C11-C12	123 (2)		

Table 3. Contact distances (<3.7 Å) between anions

S11···S22	3.65 (1)	S27···S43	3.60 (1)
\$11···\$26	3.40(1)	S29· · · S45	3.62 (1)
\$15···\$26	3.53 (1)	S30· · · S46	3.62(1)
S16. · · S29	3.66 (1)	S31···S48	3.63 (1)
S18. · · S24	3.57 (1)	\$32· · · \$43	3.66 (1)
S10S40	3.32(1)	S32· · · S47	3.64 (1)
S28 · · · S37	3.64 (1)	S36· · · S41	3.51 (1)
\$29···\$30	3.53 (1)	S36· · · S43	3.49 (1)
S20···S40	3.62 (1)		

Data collection: AFD (Rigaku Corporation, 1985a). Cell refinement: AFD. Data reduction: RCRYSTAN (Rigaku Corporation, 1985b). Program(s) used to solve and refine structure: SDP (Frenz, 1978). Computer: VAX 11/785. Refinement was by the full-matrix least-squares method. H atoms were located and included in the structure-factor calculations but their positions were not refined.

This research has been supported by The National Natural Science Foundation of China, and by the State Key Laboratory of Structural Chemistry.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete bond distances and angles, and least-squares-planes data, as well as packing diagrams have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71004 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: L11014]

References

- Bousseau, M., Valade, L., Legros, J.-P., Cassoux, P., Garbauskas, M. & Interrante, L. V. (1986). J. Am. Chem. Soc. 108, 1908– 1916.
- Broderick, W. E., Thompson, J. A., Godfrey, M. R., Sabat, M., Hoffman, B. M. & Day, E. P. (1989). J. Am. Chem. Soc. 111, 7656–7657.
- Bünder, W. & Weiss, E. (1975). J. Organomet. Chem. 92, 65-68.
- Fang, Q., Li, C., Qu, Z. & You, X.-Z. (1992). Acta Chim. Sin. 50, 365-371.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi. Delft Univ. Press.
- Kim, H., Kobayashi, A., Sasaki, Y., Kato, R. & Kobayashi, H. (1987). Chem. Lett. pp. 1799–1802.
- Mentzafos, D., Hountas, A. & Terzis, A. (1988). Acta Cryst. C44, 1550-1553.
- Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- Rigaku Corporation (1985a). AFD. Diffractometer control program system. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1985b). RCRYSTAN. X-ray analysis program system. Rigaku Corporation, Tokyo, Japan.
- Riley, P. E. & Davis, R. E. (1978). J. Organomet. Chem. 152, 209-219.
- Steimecke, G., Sieler, H.-J., Kirmse, R. & Hoyer, E. (1979). Phosphorus Sulfur, 7, 49–55.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved Valade, L., Legros, J.-P., Bousseau, M., Cassoux, P., Garbauskas, M. & Interrante, L. V. (1985). J. Chem. Soc. Dalton Trans. pp. 783-794.

Acta Cryst. (1993). C49, 1350–1352

Structure of Tricarbonyltris(diphenylphosphine)molybdenum(0) Hexane Solvate: fac-[Mo(CO)₃(PPh₂H)₃]·0.25C₆H₁₄

GERALD R. WILLEY,* MARK L. BUTCHER AND MILES T. LAKIN

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

GORDON W. DOWNS

BP Chemicals Ltd, Grangemouth, Stirlingshire FK3 9XH, Scotland

(Received 26 October 1992; accepted 7 January 1993)

Abstract

The two independent molecules in the asymmetric unit confirm a *fac*-octahedral metal geometry with bond distances Mo—P (mean) 2.502 (4) and Mo—C (mean) 1.964 (12) Å.

Comment

Fig. 1. Perspective view of the title compound (molecule 1) showing the atomic numbering. The H atoms are represented by spheres of arbitrary size. Non-H atoms are represented with 50% probability ellipsoids for thermal motion.

Acta Crystallographica Section C ISSN 0108-2701 ©1993